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GEOMETRIC DISCONTINUITIES IN ELASTOSTATICSl

by

M. K. Hassirz and G. C. Sih3

Abetract. Three-dimensional elaetoetatic problems for an infinite
golid with geometric diecontinuitiee are formulated and eolved with the aid
of potential functione. In the problem of a linearly varying preaeure
specified over a plane region bounded by an ellipee, uee is made of the
gravitational potential at an exterior point of a homogeneoue elliptical
diek. The problem of prescribing dieplacements on the eurfacee of diaconti-
nuity ie governed by the Newtonian potential of 8 eimple layer distributed
over a diek in the ehape of the region of discontinuity. The maes deneity of
the disk is proportional to the preacribed normal displacement. For an
"elliptically-ehaped" region, the applicetion of the eymmetrical form of
ellipeoidal coordinatee leade to an integrel equation of the Abel type for

the potential function. It ie ehown that if the dieplacemente normal to the

x yik . 22 2 2
ellipticel plene are given by (1 = 5= 2) Qn(x 'Y ), where Qn(x yv°) ie a
b

a
polynomiel of degree n in x2 end yz, then the corrzeponding normel etreec

ecting over the ellipse ie aleo a polynomial, Fn(xz,yz),of the eeme degree in
x2 and yz. In the caee of e circular region of discontinuity, the eolution
cen be carried out for any arbitrery value of n. The reeulte ere ueeful in the

prediction of the stebility behavior of eleetic eolide containing geometric

discontinuitiee.

1The work reported in this paper wae carried out under Contract Nonr-610(06)
with the Office of Naval Research, U. S. Nawy.

2Inetructor of Mschanice, Lehigh Univereity, Bethlehem, Pe.
3Profaeeor of Mechenice, Lehigh Univereity, Bethlehem, Pe.



o ——
gt .
EEM L

g4 e

g

l. Introduction. The rediatribution of atresses due to the presence of
geometric diacontinuities in elastic aoclida has been the aubject of many
past discussions. Among the three-dimenaional problems conaidered previously,
the majority of them pertains to geometriea end applied loadinga that possesc

exial symmetry. A collectinn of previous work can be found in the notes of

Sneddon [1] and the referencea therein. The non-symmetric problems involving
geometric discontinuities are more difficult and have been inveatigated only
in a limited number of special caaea.

A knowledge of the clessicel potential theory is pertinent to the
formulation of boundary value problems with planes of discontinuities in the
three-dimensional space. For definiteness sake, the region of discontinuity

will be assumed to take the form of a plane ellipse described by

Y
ac t =t s 3=0, (1.1)

which is referred to a set of cartesian coordinates x, y, and z. The major
and minor semi-axes of the ellipse are denoted by a and b, respectively. If
pressures, p(x,y), are applied symmetrically to the upper and lower sides of
the elliptical plane, the problem reduces to the determination of a aingle

harmonic function [2] , F(x,v,2), setiafying the boundary conditiona

3 L L3
o _ b (B, ge0)

?31 2/:, (1.2)
2 —%—-z -+ 2.2‘ { =
5{;;‘0’ (a." RSN o) (1.3)

where /l is the sheer modulus of the elastic solid. Since f(x,y,z) is harmonic,

theae conditiona mey be expreesed in the equivalent form

/& = /P*(%,‘#) , (%‘; + EBL: £ I) }‘O) (1.4)
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2 g a (1.5)

and p*(x,y) is a particulsr eoclution of the Poieson equation in twun-dimeneione
2 _/e 2.’& - h®»Yy)

The problem ie to determing the potential function f(x,y,z) euch that it

(1.6)

satiefiee (1.4) and (1.5).
Green and Sneddon [3) have examined the problem of a flat elliptical
discontinuity opened by a uniform preeeure, p(x,y) = constant. In part of the

work to follow, p(x,y) ie taken to be a linear function of x and/or y, i.e.,

pEY) = C+CB + Gy (1.7

where cJ (3=1,2,3) are constante related to the inteneity of the applied

preesure. An exact eolution ie given for the caee of Cy =€y = 0 and €y

-pD/Z;l. The eame method of eolution may be ueed for €y =€y = 0 and Cy
-p°/2/l. An attempt hae aleo been made to find f(x,y,z) corresponding to a

general expreesion of p(x,y;, say

m
/1”("'7) =2 (An %+ B. ’fn) (1.8)
The end reeulte appézzoto be rather restricted in the eenees that the corffi-
cients An' Bn of the polynomial p(x,y) are required to depend upon each
other.

An alternative formulation of the problem is to determine the dietribu-
tion of preesure neceesery to preeerﬁe certain ehape of the surfacee of
diecontinuity. Thie can be accompliehed by epecifying equal and opposite
normal dieplacements, q(x,y), on the region given by (1.1). For thie claes

of problems, the boundary conditions are
ai = - _i(_x:ﬂ ) ( }30) (1.9)
4 2(1-v) )
o
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%=o | %4..2_; >1, 3=0) (1.10)
where V ie Poieeon's ratio. Equatione (1.9) and (1,10) show that f(x,y,2) 1s
equivalent to the potential of a eimple layer distributed over an elliptical
diek. The maes deneity of the diek ie proportional to gq(x,y). For this reason,
eolutione of considerably general in nature may be found. In fact, if the
normal dieplacemente are given by a polynomisl q(x.y) of degree n in xz'and
yz, then the integrale repreeenting f(x,y,z) cen be evaluated in cloeed form.
The only limitation for the ellipticel geometry is thet the degree of q(x,y)
must be equel to m+¥%, m being a poeitive integer. The circular rigion problem,
however, ie free from euch a reetriction.

The problem of epecifying preseures and/or displacemente, equal in magni-
tude but opposite in sign, to the plenee of a flat ellipee may also be formu-
leted. Kessir and Sih [ﬁ] have shown that the the ekew-symmetric problem
requires the knowledge of twoc hermonic functione g(x,y,z) and h(x,y,2). The
simple ceee of en eliipticelly-shaped plane of diecontinuity, whose eurfecee
ere eubjected to uniform eheer, wee diecuseed in [h] o Without further

commente, it ie obvioue that a generel treetment of the skew-symmetric problem

followe immediately from the work preeented in thie paper end in [h] .

2. Eguetione in Elestoetatics. Coneider the problem of finding etressee
end displecemente in an infinite elaetic eolid whoee continuity is interrupted
by a void in the ehape of 8 plene ellipee. The epplied preesuree or displace-
ments or the upper eurfece of thie ellipee are equal to those on the lower
eurfece., Hence, the problem ie said to be symmetric with respect to the
ellipticel region located, eey at z = 0 or in the xy-plane. Outeide of thigs
region; the eheer etreeeee ’T;z end 7;2 muet vanish et z = o. These conditions

mey be eatisfied by expressing the certeeien componente u, v, and w cf the
a‘.-



In the usual way, the stress components T

displacement vector i1 terms of a single harwonic function f(x,y,2) as

. ; 2
U = (I-—Zt))- 5—% + } “i'

2% 3% ! (2,1)

7? + };{,}% (2.2)
w,g..z(;.\))sg-;};}fi, (2.3)

The details are omit.ed here since they hesve slready been given elsewhere [2] .

x2° ’T;z, and fi;z are given by

7
Tuy = 2p% i S
7 ano3* (2.4)
3
Vs = 2 _a.i__ , (2.5}
¥ # ¢ 2y 95*
7 i (2.6)
6‘;} = Z/‘ ( ;fl 373
For the mere purpose of determining the potential function f(x,y,2), the

remaining stress compaonents 6xx’ 6‘1‘4' and Txy are not needed.

3. Linearly Varying Pressure. Let the two sides of the elliptical plane

of discontinuity be subjected to a pressure that veries linearly with the
coordinate x over the region in (1.1). The disturbance of the discontinuity
diminishes 8t large distance awsay from the origin. On the plane z = o, (2.3)

and (2.6) vyield .
2 2
_3_’&1____ _ %% ) (%+%—{<l,}so)
23 Z/l (3.1)

2 LA &
%- 0, IR P ;r'ao) (3.2)

It is essumed here that the second and third derivatives of f(x,y,z) with
respect to z are bounded in the limit as z approsches zero. These require-
ments will be met in the subsequent analysls.

s B -




The problem can be resdily solved upon defining a new harmonic function

¢(x,y,z) related to f(x,y,z) by
2 ?
SRR E AT

V{(wg,;) =0 , Vcﬁa, 4,3) =0
and V’ ie the Laplacian oparator in three dimensions. From (3.3), it can be

29 -

(3.3)
where

e "_i;._‘:pj e _«'
i Jﬁ%@ e T

shown that
o _ 2 ", %
2
20 = 9%(%4)) +f TE G (3.4)
9 2 -
3% = a‘g(@)* f? ¢ wfxd} ' (225} :
The limite of the integrals in (3,4) snd (3.5) sre introduced in euch a way o
thst the stresses snd displacements vanish ss z goes to infinity. In terms of
the function ﬁ(x,y,z) the displacements become _
= (LQQE)azﬁ Cv¢5’+¢[ 72 ‘ﬁ?] '+4}32;32.[36¢5+Lr 3’72&‘ﬁ?]

(3.6)

- (I—ZD)—Q-[%¢+J} d}' "L}a,a}[%d’ +f 7axd}]: G

)
= "2("‘))[7‘9; -3 % *3;7 [#2 -},x_] (3.8)
R3320 2655 e e mes ackponente a2t
Ty - 2p5 m,( =)
PR Y 970? ;9, }976) (3.10)
5 Zﬂ[ ,31 ‘1 (%3 %L)] ) (3.11)

¢ 915
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Thus, ths boundary conditions (3.1) and (3.2) taks the form

?_fé_ y 2L % X, .’L <, 2=
- )}*— iﬁ' (Z at 17 0) (3.12)
Qé —;%%ao ’ ( 71, §=0) (3.13)
éé Upon introducing a eystem of ellipscidal coordinatse, the position of a
g point can bs determinad by the thrse parametsrs E, 7, C, ths limits of varia-
: tion of which are |
~ z 2‘
©0>% >0 21 >-b >T >-a , (3.14)
The cartssian coordinates x,y,z may be expreesed in terme of theee parametsre
: by ths relations 2
1 2 2 k3
2*(e-6) % = (a+E)(a+p)(e+Z) , o115
\f 2/12 2 2 2 2 )
‘ b"(b=a) y = (b+EN6+n)(b+T) ) (3.16)
@b 3 - Enc. (317
> In the plane z = o, the insids of the sllipee x2/32+y2/b2 = 1 may be

distinguished from ths outside by setting E = 0 and ']= o , respectively.
The boundary of the ellipee is identified by & = '7 = O

Sincs the function ¢(x,y,z) is esquivalent to the gravitetional poiential

of e homogeneoue elliptical disk at an extsrior point x,y,z, the solution ie
given by [5]

A2 4, ¥ _ 145
¢(x071?) » E‘fg [aﬂ}s + b‘L_'_S + -s"' -']\[_Q—(S—) (3.18)
whers
@) = s(a+s)(b4s), Gaw

Inssrting (3.18) into (3.12) and (3.13), ths conetant A is found to be

bty AL
A‘ ( /u ) 4Q"Lkzﬁ)"E%ﬁ) (3.20)

K(k) and E(k) are Lsgendre's complste elliptic integrels of the

In (3.20),



first and aecond kind, reapectively, for the modulus
4&2' | - (%%L,
and k'2 =] - kz. Once ¢(x,y,z) is known, the stresaes and displacements at
any point of the aolid can be calculated in a atraightforward manner.
For instance, the displacements u, v, and w in the plane z = o0 may be

obtained readily from (3.6)-(3.8) which reduce to

= (I-v) - x(%‘f"" 37 (3.21)
U= (-2J) 57(%4; + %), (3.22)
(3.23)
Wa—Z(l—v))%%. PiseS
in which
Ve, Y3 = f 5 bt 43)dy . (3.2¢)

Introducing the cantractinn
2

w , = ._z.:.. - l_?'— - _}_ 3
6) = alts bl s S (3.25)
and aubatituting (3.18) into (3.24), the function 20(x,y,z) may be represented

by the integral

Yiny.3) = -Z‘é} [f a)(s) Col Jd;

(3.26)
- _A 2 sds .
It followa that 8 fg [O)(S)J Ja‘S)
3 o0
5’1%): - i&f W) —295  _ Y’ f Sds ,  3.27)

g (a+5) Q) (a+s)*JGxs)

W A f s ds
= -n% = — . (3.28)
% %y ¢ £ (@4s)B+s)Qls)

The results of putting (3.18), (3.27), and (3.28) into (3,21)=(3.23) are




. [EEE——————

4 . = ds °‘
U= ()52 l..‘wf (a';s)‘l—(é) L(ais)aﬁs)@) aﬁs)@]‘-” 29)
V = (I-)- Hax?f

(3.30)

(@%s)(b +S)r-

W= -20-0)A% ,fi": [}f WW']

The integrals in (3.29)-(3.31) may be eveluated in closed form. They are
0o

ds 2
fg @)NQE) ~ 42 [«-Ew]. (3.32)

d < 12 2 Shu cnu
f;(m SQW[E@)_‘& U- % =75 ’ £3,39)

and others of the same type. The quantity E(u) is

U
Ew) = fo dn’t dt (3.34)

and snu, cnu, dnu are the Jacobian elliptic functions whose variable u should

(3.31)

be distinguished from the x-component of the displacement vector. Here u is

related to the ellipsocidal coordinate 3 by

-l
E =a*cnu/sn'uy = a'(snu-1) (3.35)

After some manipulations, the displacements for z = o are

s~ 28 oo e vt ]

-.7‘[7“%1( -%%:E(u) + ;ér;snu cnu/dnu]M"[E@)—UJ} » (3.36)

(A 4* snhucn
,U. < T{“Z.;' [-(H ,'z) ) -2u - %7*2 dnuu ] s

(3.37) <



Woa — HEIA M g [ Stu dnu Snu dnu. - Ew]

abz (3.38)

On the plane surface of the discontinuity, i.e., for & = 0, (3.36)-(3.38)

may be simplified since

Eu)— Ek) , u—-K@®) , sﬂf;ﬂif“‘ — 0 , as E—o,

Hence, the deformed shape of the ellipse x2/a2+y2/b 1 is given by
KA [ .
(%o - iz.p {/x [(2+4%Keh) - 20+ %) Eh) ] 25
-y [2Kit) -1+ Z)EK)] +a"4°[EG) - Keh )]} ‘
ZKP-D
€=0 “3{%@—'%7[(’*%‘?)&*)—2 Kéﬁ)] . (3.40)
Lt(w (3.61)
(w)g.o - )A% (1-% - 41

The constsnt A hss alresdy been determined in (3.20).

0f interest is the intensification of the normal stress ET;Z in the
neighborhood of the geometric discontinuity. It is the locsl ‘levstion of
6zz in the vicinity of the edge of the discontinuity (% =,/ <o) that
cortrols the stshility behsvior [ﬁ] of the plane elliptical cavity. From
(3.11)

G;; - 24 (—-— -% 97,_) (3.42)

Inserting (3.18) into (3,42) and integrating, the obtsined result gives

O ,i;{u Euy- 3% \[___ -(1-% )[E(u)—s"“c'm J} (3.43)

- 10 -
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The expression (3.43) is valid only in the region outside of the ellipse
xz/azwz/bz =1, To find 27 heer the periphery of the elliptical boundary,
the asymptotic value of & is required, By taking a vector f, normal to the

curve that defines the elliipse with parsmetric squations

%= asing , Y= bcosd (3.44)
the expansion
2abp
z - ('sin’d +bicosh)" oo (3.45)

is obtained for which terms of order higher than (> have been neglected
since e , the magnitude of gi , has been assumed to be small in comparison

with either a or b, In addition, it car be shoun that

g = --(a"s:h"}ﬁ +b oS P) (3.46)

The limiting forms of £, and Z lead to

).z 6{'1%—(—(’ (€5idh +b P s+ o, Evo (3,47

Denoting the coefficient of WAF] 2p by k and using (3.20) yield

bk’ (ab)® W T
*, = SRS (@5’ +b'cos’p) Cosgb

This is known as the three-dimensional "stress-intensity factor" [h] the

(3.4L8)

critical value of which governs the onset of unstable motion of the geohetric

discontinuity under coneiderastion,

The applied pressure on the sllipse xz/azwz/b2 = 1 may also depend on

12? yzn, where 1 is a positive integer. For n = 1, the function

/f(x,y,;) = 5 f [w(s)]z ds (3.49)

will satisfy the boundary condltlons

L N

9}1 gaﬁéi

& L - (& ﬁ,z ~1) Eth) +Kk)) * -

(3.50)



o e

- L [(Ehew-kw)] v} . g0

—= 7 = o (3.51)

Howsver, the result based on (3.49) will ochviously be limited ta the type of
preasure diatribution aa indicated in (3.50). Similar obaervationa may be

~made for n greater than aone.

4, Specification of Displacements. As mentioned earlier, when the region
of discontinuity undergoes certain normal displacements, q(x,y), that are
preacribed, the problem can in general be solved for the diatribution of the
normal pressure which is initially unknown. The conditions (1.9) end (1.10)
suggest taking the function f(x,y,z) as the Newtonian potsntial of a simple
layer of intensity gq(x,y) diatributed over the plane region §2 in the shape

of the ellipse x2/32+y2/b2 = 1. The potential is

| CK;E( ,
1049 = e g i—_R_)—GIX I b

wnere R denotes

Y2
& ]
R =[(-X)"+(y-Y)+ 3] .
The function f(x,y,2) ia harmonic and ia continuous in the entire three-

dimensional region excluding Q. Furthermore, it vanishea for distances

sufficiently far away from £ since

/f_) [‘Hf(/x))ff?(x Y)JXdY] | as R — oo

The normal derivative of f(x,y,z) ia diacontinuous for the transition from

one side of ) , say z = o*, to the other, z = 0~, i.e.,

_ 4y
F20v) @ &=o0 (4.2)

p
(’_;),J.ot -

0 =0 (43)

-1? -



Hence, (1,9) and (1.10) aru sstisfied automaticslly when f(x,y,z) is cons-
tructed from the potsntial of a simple lsyer.

for ths present problem, it is more convenient to employ the symmefrical
form of ellipsoidsl coordinates &, /) +C as given in (3.14)-(3.17).

Proposed ss a possible solution is the function [6]

= ds
/f(z’,,y,;) - jg ﬂ(w)m (4at)

Ths variable &) is defined by (3.25) or the equivslsnt form

W) = (5—5)%;;2))(5—;)

and A\ is a twice diffsrentiable function in the interval (o,1) with finits

one-sided derivatives st the boundsry points of the interval. Diffsrentiating

(bL.4) with respect to x renders

of _ [ ds 50 0B
5;,' =J % Qe (4.5)

2 3’7\@) ds 7\ 21L&
2 ‘f 2%* IQls) J o2 a% TN axz {4262

ds
Ic(g) = J£ (s) ’

satisfies the harmonic equation §7210 = 0, The remaining expressions of

in which

of/ovy, azf/’avz, and 9f/ ? 2, 'bzf’/'OZZ , may be obtained simply by permu-
tation of ths variable x in (4.5), (4.6) to y and 2z, respectively. As s

result, the Laplacian of f(x,y,2z) can be writted as

2 N @) |,
Vzﬁ(x,g,}) LV?\(@)@ + 14-\1.—5(-;-) (4.7)

with the knowledge that [7]

2% 2% 2% ?7 2; ?7

Now, computing the derivatives



2Aw) _ _
ax S al+s 2( ) ?

@ - 2 [Aw) - 22

r¥ A a%s
and etc., the integrand, Vz?\(w), in (4.7) becomes
4 /
3 -‘_.zégega / L AMw)
By means of (4.,7) and (4.8), f(x,y,z) is indeed a soclution of ths equation
szf(x,g,;) -0,

There remains the determination of A(W) which may be evaluated from
the boundsry conditions (4.2) snd (4.4), First of all, replacing x by z in

(4.,5) and using the relation
28 _ _23Q@
27  T(2-nig-z)

the result is

de
2 3 ry
7 (E.qc) [rz@rere]®
.ia e 2L f?x@)svg)——-(s 0 TR G

While (4.9) satisfies (4.3) for %= o, it reduces to an integral equation of

the Abel type for £ = o as dictated by (4.2). This will be shown in the next
section,

S, The Abel Integral. Applying the boundary condition (4.2) for points

of x, y inside x /az+y2/b2 1 ard z—0', (4.9) may be written as

b3 b76)
%’L) pom, [(é'ié)fﬂ(“»s@—(;] (e )t (5.1)

The reduction of (5.1) to Abel's equation may be accomplished by changing the

variable of integration from s to &« =1- /s and by keeping in mind that @)

is a function of s with the limiting form

oz
wie) — = kel as & —~o0

(5.2)

TS LN i

e
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Under these conaiderationa, (5.1) reduces to

[
Clb (2: -[. 7%?' £12£. + 25!9%: .
eb §(Z) _ Al) =
UGv) 0 ) I-o VA
An additional change of variable to @» = & Z gives the Abzl integral equation

(e]
ab Z) (@)d 7\(0) .
u-(W) f VZ- e (5.4)

In order to aolve for A(®), both aides of (5.4) ere integrated from o to W
by dZ/Jw - 2. Hence, (5.4) bacomea

W 0
A0 dZ [ dZ_ pr)o\ _ ab ﬁ(Z)dZ '
5 Z'/z’——'—‘w_z r’ —7, __ U-(!—\)) m (5.5)

The integrala on the left hand side of (5.5) may be evaluated without diffi-

(5.3)

culty the first of which ia

'A(o) dZ
o 707

The order of integration of the second integral

W (I
dZ @) d .
| &5 o*‘ir*—z- > (5.7

may be interchanged since the integranda possesa weak singularities. Applica-

T
- 2| Awde = 120

(5.6)

tion of the Dirtchlet formula [7] gives

()] w
J;%i%)d%.f Jl- ZXZ‘@) = Tforh(%)d% = qr[a(w)_’h(o)] ’ (5.8)

Substituting both (%,6) and (5.8) into (5 5) yielda the solution of (5.4) as

¢(Z2)dZ
Aw) = Llnr(l—x))f J%Zg (5.9)

Thus, (5.9) solves the problem of prescribing normal diaplacements gq(Z) on

an elliptically-shaped plane of discontinuity.

6 em, On the basis of the results obtained im *he previous section,

Theor

= 15 =



the following theorem may be established:

"Let. the normal displacements, q(x,y), on the plane surfaces of the

2 2

ellipse x2/82+y2/b2 = 1 be given by (1 - 55 - lif” Qn(xz,yz), where Qn(xz,yz)
8 b

is a polynomial of degree n in xz, yz. Then, the normal pressure acting over

the ellipse is also a polynomisl, Pn(xz,yz), of the same degree in xz,yz.'

Now, suppose that

200,y = Z Z C ZJ (6.1)

It suffices to prove the theorem by taking Q, (x ,yz) in the form of (6.l).
The coefficients CJ (j=0,1,°°*,n) are constants and Z is given by (5.2).
Putting (6.1) into (5.9) and carrying out the integration yields
+1
ab P(JJ-Z) ¢
Aw) = g Z C; [
in which r'(n) is the customary Gamma function. Before the normsl pressure

6 __ csn be calculated, the harmonic function f(x,y,z) must be obtained from

2z
(L.b): +'
ab TG+3) 'ds
4(%,,.;)::%”77 JZ‘?’ (j+1! C f(a)( )J \JQ@) (6.3)
In the plane z = g, (2.6) simplifies to
), 2w (T,
Adopting the notstion
c J (—%-4.2{ <I/} O)
T = l‘L (6.5)
(-—-+ > 1, ;-o)

and using (6.3), it is found thst

F(H’ ¢ ds
@i) T (I—O)r 2" = {f (a’-+s b‘*‘s)(w()]JQ(S) (6.6)
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..2jf [(a,}s)-p(—z—)] (w,&)] 'C‘;(Q)} :

R
) = (0], , = 1~ 5~ Fas
The integrands containing {Zﬂu(ai]n, (n=1,2,+++),may be expanded in terms of

2’v2 to give

where

(,) = A, +H%+Hy+--- -P(my) (6.7

in which AJ (j=o, 1 2,**°,n) are

/
'BJ(‘% b‘+s)J'c—Q_—Z§> ’

- B, f (a+s)(b+s) Q(S) f q s) :;Q(s)
ds
A. = 5f (a+s)(b+s)f_) =f,, b+s)VQE)

and so on. The cnnstants 8 gt T B, are related to Cj (j=0,1,2) as follows:

M+
o’g (Po%r"ji"“it$‘ilcr I

a.b ZF(-‘"") CJ,’62=35'.

i~ EElF =
From (6.7), (622)2 =g .8 seen to be a polynomial of degree n in xz,yz whose
coefficients depend on 5%

de T ds _ds  peol .-
f nH ? N+ N + Il
7@*s) VQE) 4 @%s) (b%s) Qe Iy B Gl QE

These integrals can be reduced to the complete elliptic integrals of the
first and secornd kind with modulus k% = 1 - (b/a)2 for & = o.

The aforementioned theorem also appliea to the skew-symmetric problem
of specifying displacements u, v on the elliptical plane of discontinuity.
Thia ia mainly because the boundary conditions on u, v are the same as thoae
described by (4.2) and (4.3) since Kassir and Sih [a] have already shown that

fur the skew-symmetric caae the displacementa are
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U = ~ 20-0) ";;% +3 32’

W= - 209) 2L 3, ; ?
W=-(2)6. +3 2?.(1 ,

where '7

G- 77—% +-"fﬁ=
and

Vg0hy, 3 =0 ,  VAGYg =0
For thie problem, the snear stresses ‘T;z’ '7;2 will bs polynomials of degree
n in xz, yz if the displacsments u, v are represented by polynomiale of the
form (6.1).
In the two-dimensional case, Sneddan [1] hae observed that the preecribed &

ehepe of e slit in an isotropic medium end the resulting surface pressure may
be represented by polynomials of ihe seme degree in one varieble. Galin [B]
has considered tre three-dimensional probliem of en ellipticel punch preesing
ageinst a semi-infinite elastic solid whoee surface outeide the ~rea of
contect is free from trections. The frictional forces ecting between the punch
end the semi-infinite booy are neglected. He shpued that if the base profile
of the puncn is given by e polynomisl of degree n in x, vy, then the preseure
ecting over the punch ls enother polynomial., Gelin'e proof ie based upon the

by
properties of Lame triple product, whichk ie different from that given in the

present peper.

7. The Symmeteric Problem. 8 eufficiently generel deecription of the

shape of the elliptical plene of diascontinuity is

n
‘}(Z) - ¢ 7L, (7.1)
where q, denotqes the amplitude of tha normel dieplecement. The reetriction

on the exponent n becomes apperent when the functions

- 18 -
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)

0§, ((n4) [as )] (7.2)

@) LIL"’('-WI Va Z ) Ll—(/—u).l"l‘(n 2)

and

ab f’(n-H 14z s
/f(%,y,}) n u,a_\))"—rv(n_,_f [w(S)] » > -] ’ (7.3)

are derived from (5.9) and (4.4), respectively. The normul pressure distri-

bution required to support the shape (7.1) can be obtained from (6.4) and

(7.3). For the range of n between 1/2 ard 3/2, 622 in the plane z = o is

(o Mr+2)

wherse Il’ I2 repreaent the integrals

( )3__a,6/t}.(n+z)l"(n+)r1 I %3Is+7?7j J_4n<3 (71.)
=9

oo n-%
[@e(s)) T =f (W] = ds
I"L"(m Gw > Bl e O
and ¥ is defined oy (6.5). If n 2 3/2, the expression for (erez)z—o
less complicated: & L
abu g, (n+1) f'(n-H){ Y "2 ds
= - o 2 a),(s =
)3—0 (-INT [n+ 2) Ir(a’?»s b+$)[ )J Q)
(7.5)

2 & L n_% 3
- (zn-l)fr f(az—;g) + (T,Z@)J [a),(.s)J Q(s)} » x .

In general, the integrals appearing in (7.4) and {7.5) can be evaluated for
n=m+ % wherem = 0,1,2, ***, . In the degenerate cass of a circular region

of discontinuity, solutions may be found for any value of n,.

8, Elliptical Region for n = 1/2 and n = 3/2. A special case of (7.4) is

»~

n = 1/2, which corresponds to the problem of a plane elliptical cut opened

by a normal pressure, GOl = constant. The opening of the cut is ellip-

ZZZU

soidal given by L
2

22) = 3, 2",
This problem was formulated by Green ans Sneddon [3] o In a later paper,

Kassir and Sih [A] pointea out that the stresses at the border of the cut

- 19 =



are singular of the order of 1/{?. The distance @ is measured in a plane
perpendicular to the boundary of the eliipse leazwzlb2 =1,

Therefore, it is natural to inquire whether cuts of a shape other than
ellipsoidal are possible and, if they exist, to determine the pressure neceseary

to preserve their shape. Consider the case

4(2) = ¢, 27 (6.1

For n = 3/2, (7.5) special zes to <o J
i 2 5
O —@‘%315’” s * ch 3"f @+)NQE

-3y J <b+sN"> 7’ f (aﬁs)(bﬁ)f@g)]

The integrsls 1n (8.2) msy be emsluated in a manner similar to those shown in

(8.2)

(3.32) ang (3.33),

The normal pressure inside of the elliptical region,'?’= o, is

Gk, - - 9—-‘3&3@—{( ) Eh) - <-—) T4 Kek) + R-49E)]

o 2()a*4? (8.3)

- ([ 2R Ew) - k(é)]}

When a = b and E(k) = K(k) = T/2, (8.3) gives the internal pressure for a
penny-shaped cut of radius s, i.e.,

O)yom — Sy B [1-3Q] | rea

The sign af ( 6;1)2 - changes from negstive to positive st the rstio of

(8.4)
(r/a) &2 0,8, This means that both compressive snd tensile stresses must be

spplied to the surfsces of the cut ir order to produce the shape (8.1).

Outside of the region of the ellipse, ((322)2 =g Mav be found by setting
v - £ in (8.2):

(8,5)



-(&’%}l[’kﬂu+ (I—zfe")E(u) + %('kﬂdfu—l)]

= —%)I[C%—')HM)—U— U Chu (dnu. ‘ﬁ." ')]}

In contraet to the eingular solution for n = 1/2, the etreeeee remain finite

on the boundary of the elliptical cut. In fact, in the limit as £ — 0, (8.5)
is of ths order of Q”. The same behavior is observed for the particular case

of a = b eince (8.,5) raduces to

63,)'0 20_0)( ){[l 3('“]SI'Z( r (.(")‘]} ) (e®

whers (6"22)z = 90e8 to infinity ae 0(1/r ) When r approaches a, the circular

boundary, the normal pressure

? -
©;),_, - 30 w( 9 , T=ea (8.7

is found to be non-singular.

It should be mentioned that {(8.4) and (B8.6) may be obtained directly

from the method of Hankel transform for solving axially eymmetric problems [9] .

9. Circular Region for Arbitrary n. The theory of potential functione may

also be applied expediently to a class of problems involving penny-shaped
planes of discontinuities. For a = b, (7.4) can %e solved in general without

imposing restrictions on the exponent n as Il = 12 = I and

a’u 9, (n+£) Mlasl
Gy), - - SLL egn) (21 + (2 +y 1]

(9.1)
The integral I is

o0 n_L
T - f [(s-&)(s-9)]
n n+3
7 S'(d4s) " 2
and the eymbol 7Y stands for
0, T<a

e ' (9.3)

2
f—f}‘%)a.

(9.2)

u21¢

A

I

t




e S -

Making the substitutions . ” 0
z S"i — G5, ’
6 = 5-'2 ’ € az+2
in (9.2), the integral I bacoTBs
z20e-9)°" &i_g? do
£ @zftE L G- - o

The determination of (6zz)z =g fOr r<a and r)> 8 will be cerried out seperstely.
2 2

= a8 and fur 2 = 0, the ellipsoidal coordinates

(9.4)

Inside of the region x2+y

E, ) take the values

T
E=0, n=7T-a,

and Gz ke = (r/a)z. Hence, (9.4) reduces to the standard Legendre elliptic
integral 2 !
(I). - 2% ( Jdio?ds_ |
=0 a3 0 (l-—&f'gz)".‘.% (9.5)
where
£ = - ()
= a
A further substitution of © = snu leads to
:2"-
( -o (,ﬁz) ( Tzn+2) . (9.6)
In (9.6), J represents the integral
f (nd u) ™ du, : (9.7)

whose values for m = 0,1,2, °+°, are given by [10]

T =K@ , T - .e(e’ L% _@/_g_i_) T, @-4)1T_ S (9.8)

e
and the recurrence formulas
l 2
Tomez = Gy [em(z- 42 Top + (em) T, , ] | o
(3
J;nu-a '2( [(me)(z,ﬂ ) Jznm - J’-’”" ] ' 21103
In order ta complete the calculation of ( Gzz)z - for E = 0, it is necessary

to find from (9,2) the quantity



[, . e
P

[(’z +7,7)I] - ( );‘o ) (9.11)
Some lengthy algebra gAves
[762d6"  _ (pp.a 6‘{//-0’-&6‘
) a5 [»An' (l ﬁza")’”-z (n+) ‘I kz n+£.

(9.12)

-k n
n+3 )[J (H'ﬁ. ) Jzn+z + ﬁ’zj;m-u-]}

where J_ is given by (19 7l Using {9.1), the internal pressure, (6222)2_0 s

in the region r{ a takes the “orm

2p (n+4) Mn+) 3, 04"
(6;;) 'fv)';ﬁ‘l"(nf;)) I )[ (+22 /k" (9.13)

+ (34ln +4% J \;z,,,,_ - (2'”‘3) 4" Jzn;-u— ] s

which is vaiid for arbitrary valuz of n. Three special cases of (9,13) will

be considersa by =pplication of (9.8)={9.10).
Casz 9,i.8)- The necessary normal presaure to maintain the shape

3¢ = ¢.[1- (G I*

may be computes from (9,13) by setting n = 1/2 as

(6”); (io) %_)[ (H-/kn + (5+‘ﬁ’2)]; - L(-’k'zjg] (9.14)
- ,ﬂ"f () ree.

20:V) "a ’
This 1s in agreement with Sneddon’s answer [9]

Case 9. Z(a) If n =1, (9.13) simplifies to

<03'})§=o (Iru)'?' (49('{) [ (I1+ ") + (7+ klz) Ju- - 5€L‘T‘ ]

( T a‘)[KC”-ZE )] o L.

At first sight, (9,15) appears to be different from the solution published

(9.15)
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by Sreddon [9] for the same problem, i.e.,

6y),., = - = (B [;f(r/;") K - K- (WDIERY] , e
in which LF
2 ar
* = (@+r)"

However, by means of the Landen transformation, the complete elliptic integrals

in (9.16) can pe written as

(I+T)ER) = 2EQ) - [1- @] k(f) - (9.17)
K& = (1+g) KE).

The identities (9,17}, (9.18) show that (9.16) and (9.15) are indeed equivslent.

(93 -0‘

Case 9.3(a). In the case of n = 3/2, (8.4) is recovered from (9,.13)

since

3
), - &) [1+3)T, (09 Ts - ¢ #°T, ]

20~y

Li-(tu)(a.o) [1- 3(—)]

In the same fashion, (5?72),20 outside of the circular plane of discon-

(9.18)

tinuity may be obtainea by letting

[('”ax"”i )I] "Z(J_I'

9; 7-0 ’ (9.19)

and

i 2
(4l T Yo (-4
which is found fram (9.4) for /) = o , € = k = (a/r), and E = r2 - 32. The

? (9.20)

(1), = % '”‘f 6*'/1=6* ds

substitution €T=:snu allows (9.20) to be

(I) (M,,i.. 4'* N ) , k= &, (9.21)

where

]

=0 3&2.

- Bl &



M r (dnu) du | (9.22)

K ( )Zn,
Shu

The integrals (9.22) can be expressed in terms of the complete elliptic

integrals and elementary functions in the following manner [10] 3

M,
? M3= 2&&, 2 2 (9.2‘0)

3in (4) - S (ek#) Fi)-4, Kik)
M- %% » Ma= 4"

The recurrence relationships azre

[2 (Zﬁ“’)M -a-(Zm ')MZmZJ:

2mi2 = (2m+r)i‘&"- (9.25)
| 2
M2m+3 = 20m0) %A [(QMH)(Z‘k 1) Man +Zm Mzm] . (9.26)
In addition, the integral (9.23) admits the relations
%) ! 1 n
(9.27)

Nmz G **.,[QM*DN +2(3k + Imbk’-m- 1) Nosi T,

in which ( )
Ny d
u
N f (dnu)ZMI'l e

If the exponent n = m;2, m being an integer, tnen (9,20) is reducible to

elementary Functions. finally, the normal pressure for ra is deduced:

711("*2)/“(!#) / - - ' l
@’7‘ GOT 2y / ) *’m[‘zuﬁ" 51;1 "‘—'&ZN”)(s 28)

~ (2143) £ (Myp,g - £*N 0 )|




The valuee of (5 ),’ =p that correspond to n = 172, 1, 3/2 are us follows:
Case 9,1(b). Ineteed of ueing (9,28), it ie simpler in the caee of n=k -
to compute (67 )

(G)

directly from (9, 1) e

n =o
. 6Vi-0*de"

a0~ A(ﬁ)ﬁ * [(*"”Z)fo (49" (9.29) 3
EJZE‘dW oA

— Uk f (- %*0%)° .] . :

These integrale are elementary oiving

-t '
(6},)7=o= - 7,%(—??) [ sin (%)‘\[@T:'—} , M>a (9.30)

which checks with thet obatined by Sneddon (9] .

-

Case 9,2(b). Letting n = 1 in (9.,28) end carrying out the elgebra

render -
; T_a Q) _2T [ r~

CG&)) a,)n' a. [( )K( ¢. E(F)] ) I< a {0 ? (9.31)

which ie 0(1/r) for lerge r. At the boundery pointe of r = e, (622),280 ie |

unbounded.

Case 9.3{b). The 1limiting form of (9.,28) for n = 3/2 corresponde

precissly to (8.,6) which hes alreedy been diecussed.

10, Conclusion. The problem of finding streeeee and displecements in
en elestic eolid with geometric diecontinuities hee been reduced to the
claesical boundary problem of potentiel theory. Hermonic functione are
develéped for the case of en elliptically-eheped plane of discontinuity
whose faces are subjected to preseures end/or dieplecemente. While the present
peper ie primarily concerned with the celculetion of the normal displecement
w and the corresponding pressure 622 s the remeining dieplacements and
streeses mey be obteined from (2.1), (2.2), (2.4), end (2.5) without difficulty.
Furthermore, with the knowledge of f(x,y,z), the strees components [2]
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L

O = 2 ( 2 3-2:"' ——3"—-) (10.1)

gt ?‘r- ag (b

1 P
6‘” = 2y (;—jz + 29 g_i:z ?_?_%_ ), (10.2)

5

7— —Zlu [0__21)) i +} :f: ] (10.3)
9%?7 9}9’97

are also known. The method of solution outlined in the paper may be used to

solve other boundary prablems af fundamerntal interest. For example, the

skew-symeetric problem of specifying displacements u, v on the surfaces of

the geometric discontinulity may ba “ormulated and soived in a simiiar manner.
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